0=-16t^2+64t+85

Simple and best practice solution for 0=-16t^2+64t+85 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+64t+85 equation:



0=-16t^2+64t+85
We move all terms to the left:
0-(-16t^2+64t+85)=0
We add all the numbers together, and all the variables
-(-16t^2+64t+85)=0
We get rid of parentheses
16t^2-64t-85=0
a = 16; b = -64; c = -85;
Δ = b2-4ac
Δ = -642-4·16·(-85)
Δ = 9536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9536}=\sqrt{64*149}=\sqrt{64}*\sqrt{149}=8\sqrt{149}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{149}}{2*16}=\frac{64-8\sqrt{149}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{149}}{2*16}=\frac{64+8\sqrt{149}}{32} $

See similar equations:

| 4+r/16=6 | | x-20=52 | | 7x+3x+5=10x+2+3 | | 3x=5x+44 | | -4(-2x+1)+5x=6x7(x+5) | | 6x-20=2x+10 | | -6y-13+18y=9+10y | | 65=0.13x | | 5q-3+38+90=180 | | 1/3*(x+2)+5x=-9 | | 5q-3+38=180 | | 6+x÷3=9 | | 1/3(x+2)+5x=-9 | | -23=-5-6x | | 5r+8+40=180 | | 1024x=2 | | 2(x+8)-7x=31 | | 2(2a-3)=4(a-9 | | 2m-313=-8m | | 8(x)=3x-2 | | (5/7)/(15/14)=(6/5)/t | | (x−7)∙3=39 | | x-12=(-20) | | –6y−13+18y=9+10y | | 9/10x-2=10/13 | | 5(3x+2)=-4(2x+3) | | x(x+5)+(x+10)=180 | | `2x-18=-6 | | 47=x+2x+(2x-9) | | -1(1-n)=-3n-5 | | -24/7y-27=-251/5 | | 9x+16-7x=-7x-20 |

Equations solver categories